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PART ONE

RECOGNITION OF PARTIALLY (XCLUIED 3-DItENSIONAL OBJE(T

USING INFORMATION FROM CONCAVITIES

I INTRODUCTION

In order to recognize 3-dimensional objects in 2-dimensional scenes a shape

description, complete an# to determine the 3-dimensional object, must be

recovered from the scene. Althouh it is possible to recover some 3-dimensional

information, for instance shape from shade [21] or shape from texture [13], in

general the information recovered will be a 2-dimensional representation of the

object. Many methods are available for interpreting 3-dimensional objects in 2-

dimensionally arrayed range images [31, [20]; however this is considered as a

somewhat different problem, since depth information can be derived from the scene

with little or no ambiguity. The representation recovered from regular 2dimensional

intensity sceneswill consist of a mapping from an object-centered coordinate space

to a viewercentered coordinate space [2]. This mapping represents any reorientation

of the 3-dimensional object within its coordinate system which results in a change

with regard to the viewer.

Curntly there are two approaches to forming an object description under these

conditions. In the first approach [4], a 3-dimensional representation of all the

objects to be recognized is stored. Then when a 2-dimensional scene is to be

analyzed, the 3-dimensional model is transformed to obtain its 2-dimensional

equivalent. The corresponding 2-dimensional versions are then matched against those

extracted from the scene. The main difficulty with this approach is the amount of

upfront processing required to compute an adequate number of transformations to

required to compute an adequate number of transformations to represent the possible

object views.

In the second approach, the transformed object representations are calculated

a-priori and the corresponding 2-dimensional descriptions stored for the scene
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analysis algorithm. Obviously the 2-dimensional descriptions must be compact

enough so that a sufficient number of views can be stored without exceeding memory

restrictions. Fourier descriptors [18],[19], and boundary curvature [26] have been

used to describe 3dimensional objects in this manner however, they are inadequate

when conditions of occlusion and boundary noise respectively are allowed. In this

paper, a method for 3-dimensional object identificationsimilar to the two above but

with much greater immunity to conditions of occlusion and boundary noise is

presented. The method is believed to be applicable in many industrial and military

systems where efficient and reliable identification is necessary.

In section II, the concepts of shape space and shape vector are introduced. The

formalization of these concepts provides a basis upon which shape contours can be

analyzed, even in the context of incomplete knowledge ( occlusion ). The underlying

structure for constructing the shape vector is the critical point. In section III a new

method for defining critical points is described, which in many cases offers

improved performance versus those defined on the basis of curvature. In section IV a

procedure for extracting these new critical points from descrete data is presented,

and in section V the corresponding shape identification algorithm or cognitive stage

is described. Finally, in section VI the procedures ability to recognize partially

obscured, complex 3-dimensional objects in 2-dimensional scenes is demonstrated.

I SHAPE SPACE AND FEATURE VECTORS

In order to distinguish one shape from another, or a partial shape as a part of a

whole shape, some mechanism which examines the relationship between shape

measurements is needed. One such mechanism which is ideal for this application is

a shape space [24]. By introducing a shape space defined on the measurements,

relationships between these measurements can be quantified and thereby compared.
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The basic element of shape space is the shape vector k.Z, where j indicates the jth

set of measurements from the kth shape. If there are K shapes to be analyzed, then k

is integer valued from I to K. The range of j depends on the total number of

kmeasurements possible on a given shape k. The shape vector .Z consists of a

kM kmeasurement vector, , normalized by a scalar factor is referred to as the sizeaa

variable. Thus,

kz M / ks
Ji J J

The measurement vector consists of I measurements between predetermined points

on the shape kS, represented notationally by

kM k k k k2j ( m lI Jm 2  , '''.,J m i  , ..., 2

Combining (1) and (2) yields the final form of the shape vector

k k k k

k mI j 2 ,m j mI

k k k k
js1 is2 jsi j I

For notational purposes it is convenient to rewrite (3) as

kZ..k k k k4I Z "' j zi " 'zI  )4

where each j.z. represents the ith measurement component normalized by the size

variable. When constructing the shape vector two important properties must be

preserved: 1) all measurements are made between a set C of predefined points, 2)
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the shape vector is independent of the size variable. If these conditions are met, then

any two shapes which have the same shape vector are said to be equal with respect

to the measurements.

The Measirenent Vector

The exact nature of the measurement vector is described next. Let each element of

C be represented by the ordered pair cn=(xn,yn), where xn and Yn are the spatial

coordinates in R . The displacement vector between any critical point cn and any

reference point c'=(x',y') is given as

cn+C' = (X+X' yn+y')_ 5

the normal Euclidean definition for displacement in R2 . The resulting vector yields a

displacement with respect to the origin. With this definition in mind, consider I

arbitrary critical points which constitute the jth measurement vector formed from

C. Now form a reference point, -( 7,, by calculating the centroid of the I

points as

II 11 I

Then form the components of the measurement vector by calculating the displacement

between each critical point and the feature centroid. Mathematically this is given by

.m. ( .x. - j- y 7 i=1to 1. 7

"J = ;i jc'ji"

This in effect tranlates all measurements to the origin of in other words, the

4
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measurement vector is an l-tuple of vectors originating from the origin of R2 . The

relationships described by (6) and (7) are demostrated graphically in figure 1.

Rotation, Translation and the Measzement Vector

It is a desirable goal to remove the effects of rotation, translation and scaling

from the shape representation or to at least account for them. An examination of

these effects for the first two transformations on the measurement vector is now

discussed (the effects of scaling are closely related to the definition of the size

variable and will be described later).

Since the rotation Re, of the shape by an angle 0 is linear [10], the rotation of the ,

arbitrary set {c1, c2, C3, ... , ci} by an angle @ about the origin results in a

rotation of the m,'s about the origin plus a displacement to the centroid of the

rotated feature. This can be shown mathematically as

j = R{j jmi} = R0 {jmI}+R 6 {jU} 8

where the latter two rotations are about the origin. The latter displacement term in

(8) will be factored out by the subtraction in (7). Thus the angle of rotation between

the rotated measurement vector and the original measurement vector can be

calculated for any component i as

.= SIGN (S) cos{ ( mi ' jm i ) 9
I mi  III mi'

where (e,o) is the standard iner product and i1 Is the standard norm for vectors

5



in R2 . From this it can be seen that the only difference between measurement

vectors from the rotated set of critical points and the unrotated set is a rotation a

about the origin.

Similarly, a translation T, of the set (c1, c2 , c3 , ... , ci} by a vector ct can be

written as

c. = T =c4 T =m.+ i + .c+c t  to

However, f-ct is just a new centroid which will be factored out in (7) leaving only

the original m.'s. Therefore, translation has no effect on the measurement vector.

The Size Variable and the Effects of Scaling

The second condition required for the formulation of the shape vector is that the

shape vector must be independent of the size variable. This can be achieved by

making the size variable a function of the measurement vector. One such fuction can

be formulated as

I

S 2 1m MI 11

This formulation can be interpretted as the spatial energy contained in the

measurement vector. With this value as the size variable the sum of all spatial

energy in any shape vector always equals i.

As a result, the effects of scale change can be removed. As an example, consider

the previously mentioned set of arbitrary points. If they are scaled by a factor a,

their measurement vector will become 'C

6



M (aimIa m2 ,a i m3 ,a jm4 ,a i m5 ,a j m6 ) 12

which has total energy given by

I

Et IIMa I Hi I. 13

This is equivalent to the size variable for .M multiplied by a. When the

corresponding shape (feature) vector is calculated the scale factor a will be canceled

by the size variable.

GENERALIZED DESCRIPTION FOR IRREGULAR 2-DIMENSIONAL SHAPES

Since initially only 2-dimensional shapes are considered the domain for a shape,

called S, is restricted toR2 . The shape S consists of a bou-ded, simple, closed

curve B [22] and the area enclosed by this curve, called the interior I. In other

words, S=BnI. The shape description will consist of a finite set of measurements

extracted from S. These measurements will be made between a set of points C,

which are referred to as critical points. The set of critical points is a subset of B.

In order to define this set C, another structure called a concavity tree must first be

described.

According to Sklansky [24], the concavity tree is a structure for describing

simply connected silhouettes. If the shape S is convex , then the concavity tree is

trivially the shape S itself. In this work, it is assumed that the shape is non-convex,

this will be the case in most applications where irregular objects are to be

processed. The concavity tree is described for the shape S by the following

7



procedure.

i) Compute the convex hull of the shape S, called Sc. This is defined operationally

by

Sc = Ch( S. 14

The convex hull is the smallest convex set which contains S.

2) Subtract the original shape S from its convex hull Sc. This is equivalent to

finding the intersection of Sc with the complement of S (S). The set formed by

SCnfs is most likely a disconnected subset of Sc . Consider each connected element of

this subset as a branch of the concavity tree (subshape). Denote each branch by Si,

which indicates the ith component of scNS. Each Si will have the same properties as

S.

3) To find the next level of the concavity tree, replace S by Si and Si by Sij.

Repeat the above procedure for each level I branch of the concavity tree. The index j

will denote the branches of the concavity tree at level 2.

4) To complete the concavity tree, continue with the above procedure progressing

from {Si} to {Sij} to (S jk) ect. until all residual subshapes from the second step are

convex. The set of shapes (Si, Sly Sijk, ...} for all i,j,k,... forms the concavity

tree. Figure 2 shows an arbitrary shape S and its resulting concavity tree.

Since the concavity tree is based on the relationship between a shape (subshape)

and its convex hull there is only one unique tree for each shape (subshape). However

it is possible for this tree to have a countably infinite num'r of levels and an

uncountable infinite number of branches, for example see Koch curves [65]. In this

work the class of shapes examined will be resticted to those which are sufficiently

smooth as to have only a finite number of levels and branches, and thereby a finite

number of critical points. This restiction still includes all shapes found in real

applications and all but the most abstract found in any application.

Now that the concavity tree has been described, the definition for the critical

8



points can be considered. Let the set C represent the critical points for a shapE S and

41(e) the operation which yields C from S,

C: = (s). 15

The set C is equivalent to the union of all critical points extracted from all

branches of the concavity tree of S, i.e.,

C: U C 16
all levels n

n

where,

all branches

C 2  U 4I'(S..),
all branches 'J

j

C 3  U q/'( S.. )
all branches ij

k

etc... 17

The operation '()for any shape (subshape) must now be described. Consider any

branch of the concavity tree (S jk..) and find its intersection with the boundary B, so

that

B ijk. = Bn fl Sijk 18

This intersection defines a line segment for each branch of the concavity tree. The

9
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collection of all such line segments formed at each level of the tree is the basis for

the critical point sets C n. The critical points are finally defined as the endpoints of

the B ijk...'s. Figure 3 illustrates the boundary segments and critical points for the

first level concavities of the shape in figure 2. Finally, the operation %P(.) can be

summed up by the following hierachy of point set relationships.

C 41 (S ),
= U Cn,

all levels
n

= U U 41(S ijk ... m ,
all levels all branches

n m

all levels all branches

n m

n m

These relationships, between all allowable shapes S with their boundaries and

their concavity trees, are unique and well defined. Therefore, the relationships

between any shape S and its corresponding critical point set C are also unique and

well defined.

Although these relationships are unique and well defined, their exists two special

-cases which can lead to some ambiguity if not handled properly. The first case

occurs when two branches from the same level of the concavity tree, Sij .. mn and

S ' have the following property:
ij...mn '

S qj ... mn n is...mn' = a single point 20

10



but the intersection of the open sets formed by Sij...m - Sij...m, is empty. When

this happens the subse(uent boundary segments associated with the two branches of

the concavity tree, S ij...mn and S i...mn' will in fact be a single line segment. To

remove any ambiguity, the single point described in (20) will be used to partition

this line segment into two seperate ones. This single point will be called "critical"

and will be considered as two seperate points, each with singular associations to

S.. and Sij... mn' respectively.

The second case is similar to the first except involves an overlapping of critical

points from different levels of the concavity tree. In other words, the sets Cn are not

mutually exclusive. This will not be a problem as long as the membership

information within the Cn's is retained along with spatial information in R2. *'

Consequently, the location of critical points within R2 and the knowledge of the

levels and branches of the concavity tree from which they originated are of equal

importance.

As a rule of thumb, each branch of the concavity tree will generate two critical

points. Each of these critical points can be represented by a triplet (x,y,l), where x

and y represent the location of the points in R2 and I indicates the level of the

concavity tree at which the points were generated; x and y are real valued numbers; 1

is integer valued.

Since initially, only shapes which are invariant in R2 are allowed three

transformations must be considered. The three transformations - scaling, rotation

and translation - are all well known mappings from R2 to R2, and are represented

symbolically by Sa('), Re(S) and T(S) respectively. They are defined

mathematically in the following. The functions Sa(S), Re(S), T(S) map a shape S

11



into a shape S' such that all points (x,y), elements of S are mapped to points in S'

by

S a{f (xy)}ax , ayVX), 21

Re (x,y)}( x cose -y sine, x sine + y cose) = (x', y'), 22

T f(x,y)} = x + xt , y + yt) (X', y, ), 23

2 23

where a, e, xt, yt E R, (x,y) E S C R2 , (x',y') E S' C R2.

If a is restricted to being positive and finite, e to being greater than zero and less ,

than two pi, and xt, Yt to being finite, then all three mappings are not only onto but

one-to-one [10].

Using the definitions for the transforms of scale, rotation and translation the

following theorem can be formulated.

Theorem: the set of critical points C obtained for an arbitrary shape S which has

undergone one of the transformations Sa, R6 or T is identical to the set of critical

points for the untransformed shape, subjected to the same transform. This can be

stated mathematically as:

*S (S))Sa (4 (S)),

F( R0 (S)) Re ('F(S)),

'PI( T (S)) T('(S)). 2

The proof of this theorem appears in the appendix.

12



In general compositions of S a(s), Re* and T(.) are not commutative because of

the nonlinearity of T(e); therefore their order must be preserved. However,

combinations involving only Sa,() and Re(*) are commutative [101.

The next question to be addressed involves the invariance of critic-' point

determination when only partial shape information is available, this problem can be

divided into two simpler and similar type problems, namely, truncated shape

representation and composite shape representation. In the first case, it is desirable

to determine a source shape S from a given shape S' where S'CS and B'ABz0. In the

second case, it is desirable to determine two or more source shapes iS from S'

where S'= U .S and B'flBz0 for all i.
all i

In order to accomplish either of the above task it is necessary for a subset of

critical points from each source shape to remain unaltered in S'. Since the critical

points are fundamentally linked to the concavity tree of the source shape, this is

equivalent to requiring that a portion of the concavity tree remain unaltered.

In the case of truncation, the portion of the concavity tree which is distorted can

be identified by examining the convex hulls of the whole and partial shapes, or S and

S' respectively. Those subshapes or branches of the concavity tree which do not

intersect a portion of (Sc-Sc') remain unaltered. An example of this relationship is

illustrated in figure 4 for an arbitrary shape S and subshape S'. From this it can

be seen that each branch of the concavity tree acts as a generating node for all

subsequent branches in that portion of the tree. Any node which remains unaltered

will generate sub-level branches identical to those of the original tree. A comparison

between the branches of the original shape S from figure 4 and its corresponding

truncated shape S' is shown in figure 5. The branches inscribed by squares are

13



identical in both trees.

In the case of composite shapes, the effects are more complicated. Not only are

branches of the original tree truncated, but new branches may be created and others

augmented. This occurs because 1) the union of the convex hulls of the combinig

shape is not necessarily convex, thereby creating new concavities and 2) concavities

from one shape may overlay interior areas of another. These possibilities are

illustrated in figure 6 for a composition of the shape used previously in figure

4.

In general any branch of the concavity tree which intersects a portion of the

overlap region or intersects a concavity which includes the difference between Sc'

and U .Sc will be distorted. In certain cases it is possible for certain branches, a
all iI

subset of the distorted portion of the tree, to remain unaltered. However the

conditions under which this occurs are complex and specific to the particular shape.

In the next section, the gap between the theoretical shape description developed in

the previous section and a discrete implementation for digitized shapes is bridged.

The effects of finite boundary representation, quantization noise and additive

observation noise are also considered.

III CRITICAL POINTS FROM REAL DATA

The definition of critical points advanced in the previous section can be restated as

follows: critical points are the endpoints of the line segments formed by the

intersection of a shape's boundary B with the branches (subshapes) of its concavity

tree. If the shape boundary is continuous and can be observed without error, then

these critical points can be exactly determined for all combinations of scaling,

rotation and translation. However, in the discrete case the shape is usually

represented by a finite, integer-valued sequence. This sequence is almost always in

14



the form of a chain code or a thinned boundary code [12]. In this work it is assumed

that the sampled boundary has been properly preprocessed so that it meets the

discrete definitions of being closed and single-connected. These definitions are

described in [22] along with various techniques for processing images which

guarantee that these conditions are met.

With these requirements in mind, let the processed shape be represented by the

sequence {xiYi}iNi, which corresponds to the quantized estimate of the shape

boundary. The coordinates of the sequence, xi and y,, should be eight-connected and

integer-valued. Because only boundary information is available the previous definition

for critical points will have to be reinterpreted.

The general procedure for extracting critical points is illustrated by the flow chart

in figure 7. At the front end of the system is a spatial filter which is chosen to

minimize the effects of the quantization and observation noises. At the next stage,

the convex hull information about the shape is obtained. A decision process is then

required to identify and confirm critical points. Depending on the output of the

decision stage, the shape is either segmented into the next level of branches of its

concavity tree or the procedure is terminated. This procedure is recursive, with each

pass around the loop corresponding to the processing of one level of the concavity

tree.

The purpose of the spatial filter is to reduce the effects of the quantization noise

and the additive noise in the boundary sequence. The type of filter chosen should be

optimized for the statistics of the noise processes and the source shapes [1].

In general these statistics depend on the imaging equipment and the set of source

shapes, and cannot be determined globally. In fact, they are most likely nonstationary

random processes. On the other hand, if the filter is made robust, good results can

still be obtained. Therefore, an averaging filter is chosen.

xa ajN P with the sameThe output of the filter will be a real-valued sequence (x ,y wi ths

15



number of elements as the input sequence. By increasing the length of the filter

window the effects of the noise can be made arbitrarily small. However, the

smoothing effects may cause smaller features of the shape to be eliminated. In many

cases, this may be considered advantageous because a simultaneous reduction in

feature processing and increased noise immunity is obtained.

The next step is to find those points from the sequence (xa,ya}N 1 which are

elements of the boundary of the convex hull of the digitized version of S. This

boundary is equivalent to the Minimum Perimeter Convex Polygon (MPCP) enclosing

S. It can be calculated using a modified version of the routine described by Freeman

and Shapira [7]. This modified version is adapted to process real data instead of

integer data. It requires a longer running time but still iterates to a final solution in

all cases. The actual convex hull is not required, only the perpendicular distance

from each point of the shape boundary to the MCPC. This distance is referred to as

the difference sequence (d}N..N

The procedure for determining the critical points from the difference sequence is

now described. As a first step, an interpretation of the definition of critical points

must be applied in the context of the difference sequence. Since the difference

sequence measures the distance between the boundary of S and the boundary of Sc, it

can be used to find the intersection defined in (18). This intersection for the

discrete case corresponds to those points of Ndi)N which equal zero. The endpoints

(critical points) of the associated line segments are just those points where the

difference sequence goes from a zero value to a nonzero value. if the shape boundary

is observable without error, then the critical points can be determined exactly;

however, this is not the case when applied to any discrete data. Therefore, the

16



critical points will be determined by finding certain transition regions in the

difference sequence. This will compensate for most of the errors due to observation

noise as well as errors incured by the resampling of shapes which have undergone

one or more of the transformations discussed previously. Of these C -ee, only the

transformation of scale seriously effects the difference sequence (the maximum

error resulting from the other two transformations is limited to 2/V7 times the

quantization grid size). Since the spatial energy contained in the shape is directly

proportional to the area of the quantization grid which it covers, any reduction in

scale by a factor a results in a simultaneous reduction in signal to noise ratio of a2 .

Because of this, certain compromises must be made in the performance of the

critical point extraction algorithm, specifically, it will be designed to operate over a

limited range of scale factors. To be more precise, the resulting procedure tries to

predict the behavior of the critical points over the design range of scale factors. This

reduces to a more basic problem of distinguishing concavities formed by the noise

processes from those concavities due to the shape structure. The exact procedure for

this is described next.

The input shape for extracting critical points for the shape dictionary is evaluated

at a equal to one (the maximum scale factor). This corresponds to the highest signal

to noise ratio expected for the shape. The first step is to isolate a set of potential

critical points. This is accomplished by comparing the difference sequence to a

threshold, r1. When the absolute value of the difference sequence is greater than r,

a concavity is formed. The points inside the interval [O,r,] closest to the position

where the r threshold is crossed are considered as potential critical points and

added to the critical point list. These points are in direct correspondence with the

endpoints of the line segments in (18). They determine certain subsequences of

N called concavity sequences. The concavity sequences ar the sequential

portions of (di}N which are gr3ater than r1 . Associated with each concavity
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sequence are a pair of critical points, one at each end. The first threshold simply

identifies possible critical points. A second threshold is used to evaluate the most

probable underlying cause of a concavity.

The second threshold r2, which is greater than r1 ,is used to eliminate critical

points associated with small concavitities from the list. It also helps remove most

concavities which are formed strictly from observation noise. For each sequence of

points within a concavity, {d,1, the maximum absolute value for the do's are found.
II

If this value, called dc ax, is less than then the critical points associated with

the concavity in question are eliminated from the critical points list. Since it is

impossible to distinguish small shape concavities from those produced by noise with

just one sample, the alternative is to eliminate them all. The reasoning being that

the total number of shape concavities eliminated will be small compared to the

number of noise produced concavities. This can be justified theoretically by assuming

that the average maximum depth of the actual shape concavities is much greater than

the maximum depth of the noise concavities. This is illustrated in figure 8 for a

generalized representative shape. This type of decision is analogous to the classical

maximum-likelihood decision criteria [16]. Note that the depth of the true

concavities can be considered as the signal energy, and the depth of the noise related

concavities as the noise energy. From figure 8 it can be seen that for appropriate

thresholds rI and r2 most of the effects of the noise can be eliminated, provided the

signal to noise ratio is sufficient. The matching algorithm, to be described later in

this chapter, is designed to be very tolerant of missed critical points as long as they

are listed in the dictionary. However, it is susceptible to error if unexpected critical

points are found in the problem text. Therefore, the threshold r2 is biased by an

amount rb when the shape dictionary is being prepared. The direction of the bias is

in the direction of higher false alarm rates for concavities due to noise.

Now that the majority of potential critical points have been isolated, it is
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necessary to find a method of predicting their behavior in the problem text c-ver the

design range of scale factors. The effects of changes in a on the jdcl's falls into two

categories: 1) concavities found at the maximum value of a may collapse below the

r 2 threshold and their associated critical points eliminated from the problem text;

2) segments of the difference sequence, which are outside the interval [O'r 2] for

large a, may cross the r2 threshold and create new critical points. Of these two

possibilities, the first case has been observed to happen most frequently. This can

be explained as follows. Because the depth of a concavity is determined from two

extremal points of opposite direction, namely, the outer most points on the shape

boundary contained in the convex hull and the inner most shape points corresponding

to the maximum depth of a concavity, the smoothing effect of the spatial filter

converges these two points approximately twice as fast as distances based on only

one of the extremal points, i.e. case two.

In order to predict the occurrence of these two changes, two additional thresholds

are introduced. Their purpose is to assign a measure to regions of the difference

sequence which may cause one of the above changes. This measure, called the

confidence number, will be assigned individually to each critical point in the shape

dictionary. The confidence numer indicates the percentage of the scale factor range

in which a particular critical point is detectable as well as the order in which it

enters (or leaves) the problem text.

The first of these two thresholds, r3 , is used to identify candidate critical points

which may be detected in the problem text for smaller values of c. If any sequential

portion of (dc} for any concavity has the property that

r dc  r 25

for all d c in that group, then a potential critical point is indicated. The two points
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where the sequence {di} indicated by (25) crosses into the interval [r2,r3] are added

to the shape dictionary and assigned a confidence number, #c, given by

I d c r n I
# m3 26

c r 2 - r3

where drin is the minimum absolute value of the difference sequence in region

[r2 ,r3]. An example of this situation is illustrated in part a of figure 9.

The second new threshold, r4, is used to measure the proportion of scale factors

at which a particular concavity, and its associated critical points, can be detected.

For each concavity sequence with dCax greater than r2 assign a confidence number

according to the following:

if dc > r then #c i;

dc -r2

else # 1 max 2 27
C r4 - 3 -

This situation is illustrated in part b of figure 9. Note that r4 is generally twice

as large as r3 and that r3 > r2 > ri .

At this point the algorithm for extracting critical points and assignment of

confidence numbers for a single level of the concavity tree has been described. To

extend the procedure to the rest of the concavity tree, the recursive nature of the

algorithm must be defined. Since the concavity sequences correspond to the next level

of concavity tree branches, they can be processed individually in the same manner as

the original shape. The only modification required is the reversal of the value for

s in (9) at each new level. New critical points are added to the shape dictionary as

previously described. Confidence numbers are assigned using the same criteria as

before with the following exception: concavities which have confidence numbers less
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than 1, have all sublevel critical points assigned a confidence number calculated as a

product of the current level confidence numbers with the values determined according

to (26) and (27). The process is propogated through the concavity tree until no new

points are found. Figure 1O and 11 show the difference sequence and critical points

respectively from an arbitrary shape for levels 1, 2 and 3 of the concavity tree

respectively.The resulting dictionary page contains the following information

extracted sequentially from the shape boundary for each critical point: 1) its x and y

coordinate values, 2) its confidence number, 3) the level of the concavity tree at

which it was found.

Shape Dictionary Calculation for 3-Dimensional Objects

Consider an arbitrary, -rigid object as shown in figure 12, where Gx, ey and 0

describe angles of rotation in the three axes of the rectangular, object-centered

coordinate system. The z-axis of the object-centered coordinate system is restricted

to parallel alignments with the z'-axis of the viewer-centered coordinate syster-.

This restriction results in the following interpretations for motion attributed to the

object. Te imaging plane shown in figure 12 is the space in which the object is

projected

1) Translation of the object ( or the object-centered coordinate system ) with

respect to the z'-axis results in a scale change in the imaging plane.

2) Translation of the object ( or object-centered coordinate system ) along either

or both of the x' and y' axes results in a translation in the imaging plane.

3) Rotation of the object by an angle Oz about the z-axis of the object-centered

coordinate system results in a rotation by angle Oz in the imaging plane.

4) Rotation by the angles e and S in the x and y axis of the object-centeredx y

coordinate system results in a new projection of the 3-dimensional object in
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the imaging plane

The first three transformations are the same transformations which have been shown

not to effect the critical point/feature vector formation procedure. Therefore, only

the fourth transformation will necessitate a modification in the procedure

previously described for 2-dimensional shape recognition.

The necessary modifications will result in an expanded shape dictionary. Now

instead of one set of critical points for each shape, there will be several sets; each

representing a different rotation about object-centered axes x and y. Therefore the

following procedure is suggested for assembling the 3-dimensional shape dictionary.

1) With the object at its minimum distance from the z' plane (maximum scale

factor) obtain a projection of the object in the viewer imaging plane with x and ex y

at zero degrees.

2) Next, obtain the outer contour of the projected shape and extract its critical

points using the procedure detailed earlier. Store as the first dictionary page

for this shape.
0

3) Increment 0x by 0inc ( a divisor of 180 ) and repeat steps 2 and 3 to obtain

the next page in the dictionary for this shape. Continue incrementing 0x until a
0

rotation of 180 has been reached.

4) Reset 0x and increment 0y by inc . Keeping 0 y fixed at the new value, repeat

steps I thru 3 until 0 has been incremented to 180.Y

0 2

The shape dictionary will now contain (180 / 0inc ) views of the 3-dimensional
0 0

object. The other views ( for 0x and 0y between 180 and 360 ) are mirror images

of those already calculated, and may be extracted from the existing dictionary by

processing the critical points in reverse order.
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The choice of 0inc directly effects the accuracy and completeness with which the

3-dimensional object is described as well as the amount of memory needed as ..nc

is reduced the accuracy of the description is increased along with the amount of

memory required to store the dictionary ). With regard to the accuracy of the 2-

dimensional shape description, an unintended but benificial side effect is obtained

from the extraction of the critical point's using the concavity tree. As the 3-

dimensional object is rotated, various sections of the object become visible. The

projections to these sections onto the imaging plane manifest themselves as new

concavities in the corresponding 2-dimensional silhouette. Depending on the direction

of rotation, these new concavities are either entering or leaving the concavity tree.

Since this is the essence of the information measured by the confidence number,

additional accuracy is gained. This is especially useful when the actual angle of

rotation for the problem text is not a multiple of 0 nc

Critical Point Determination for the Problem Text

When the boundary of an unknown shape is obtained a critical point list (problem

text) must be configured for it. The procedure by which this is done is quite similar

to the one described in the previous section; however, no confidence number is

calculated. This is due to the fact that an exact value of the scale factor a is

unknown. As a consequence only those portions of the difference sequence partitioned

by the thresholds r1 and r 2 are used to determine concavities. These concavities

may be formed in three ways which are illustrated in figure 13, parts a, b and c. In

the first case the r and r 2 thresholds are both crossed in forming a concavity; for

this case, the critical points for this concavity are chosen as the points nearest to

threshold r inside the interval [O,r 1 ]. In the second case only the r- threshold is

crossed; therefore, the nearest points to inside the interval [O,r.,] are chosen as
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critical. In the last case, only threshold r1 is crossed; therefore, no critical points

are chosen since the concavity is considered too small to register. As a final result

the problem text contains the following information extracted sequentially from the

unknown shape's boundary for each critical point: 1) its x and y coordinate values, 2)

the level of the concavity tree at which it was detected.

IV COGNITIVE STAGE

Once a problem text has been defined it must be matched against all the dictionary

pages (shapes). Since the algorithm is required to recognize partial shapes as a part

of a larger shape, features must be formed and matched accordingly. The basis for ,'

comparison is the shape or feature vector described previously. It consists of

measurements made from I arbitrary critical points selected from the shape

dictionary or problem text. As a first step, the process by which each feature vector

is selected must be made non-arbitrary. Four general conditions are suggested for

choosing the individual critical points; they are as follows:

1) The set of all feature vectors should give near equal representation to

all parts of the shape.

2) The total number of feature vectors is kept as small as possible.

3) Each feature vector represents a feature likely to appear under certain

conditions of translation, scale or rotation.

4) Each feature represents a localized characteristic of the shape.

The conditons for the representative feature set can be met by combining the

concavity tree information with the confidence number information contained in the

shape dictionary. The procedure for this is as follows. Let each pair of critical
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points associated with a given concavity act as seed points for a Feature iectcr.

Choose the two most reliable neighboring critical points to each side of "he seed

points to complete the sixtuple. This method guarantees at least one feature vector

for each branch of the concavity tree. Furthermore, it restricts each feature to three

adjacent concavities for a given scale factor. Finally, a linear growth rate is

achieved - if there are N critical points then there will be N/2 feature vectors. The

method for selecting the most reliable, neighboring critical points is described next.

Recall that the confidence number not only indicates the percentage of scale factors

for which a critical point is detectable but also the order in which they are detected.

For example, if #a and #bf represent the confidence numbers for two critical point

pairs - a and b respectively, and #a > #b; then if pair b is detected, pair a should

also be detected. Therefore, for a given critical point pair with confidence number

#c choose the two nearest neighboring critical points which have confidence numbers

greater than or equal to #c' When considering the problem text, information

concerning scaling is unavailable; therefore, the simplest scheme possible is

derived, i.e, each consecutive grouping of six critical points forms a feature vector.

Let the feature vectors from the shape dictionary be denoted by mkZ where k

indicates the page of the dictionary and m the mth feature vector within page k.
P

Similarly denote the nth feature vector of the problem text by nZ.

Step 1) Associated with each feature vector of the dictionary and the problem text

is a sixtuple called the level code vector. Each component of the level code vector is

integer valued and indicates the level of the concavity tree at which the corresponding

critical point was detected. The symbol for the level code vector associated with

feature vector kZ ( Z) is kl ( 1). For feature vectors to match it is necessary

that their level code vectors also match. Therefore, in the first stage of the

procedure all of the level code vectors from the shape dictionary page and the

problem text are cross matched. The distance defined by
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I dk" Pl.2

d (mn) = 1. - 1.
IiM1 1 nli

is the basis for each level code vector comparison. A value of zero for dl(m,n) is a

necessary condition for two feature vectors to match. This distance is calculated for

all mEMk and all nEN. This cross referenced set is referred to as NXMk. Each pair

(m,n) such that d,(m,n)=0, is added to the reduced feature set called NXMk. Since

dl(m,n) requires only (2*I-1) integer operations, compared to (2I*1-2) real valued

operations for a complete feature vector comparison, computational overhead is

significantly reduced.

Step 2) For each pair of features associated with the elements of the reduced set

NXMk calculate a pair of feature vectors using the definitions methods outlined in

chapter III. Next evaluate the distance d (m,n) defined by

di (m,n) I zi  p Z 29

for each component of the feature vector pair. In the noiseless case the distance

di(m,n) is zero for all components of the feature vectors m and n if they match.

Since this is never the case a finite positive distance rm must be allowed when

evaluating (29). Therefore, if di(m,n)<rm for i = I to I, then the feature vectors

are said to match. The set of matching feature vector pairs from this stage form the

new set NXM"'. It should be mentioned at this point that a zero value for all

components i with respect to the distance di(m,n) is not a sufficient condition for a

match, since only the magnitude information from each component is considered in

(29). On the other hand the angle information is examined in the next phase of the

algorithm and errors rarely occur due to this in the final evaluation.

Step 3) Encoded within each group of matching feature vectors is information about
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the scale and rotation parameters of the problem text, a and e respectively. If a

noiseless case is assumed, then the a parameter is equal to the ratio of the two size

variables and the 6 parameter is equal to the angle between the feature vectors.

Since perfect knowledge of the feature vectors is never obtained the values of a and

e can only be estimated. The equations for the estimates of a (a) and 0 (0) are

given by (30) and (31) respectively.

6 dk
era,n  •zi I

where

dk p niz.,

0i  cos 3'0
II m z, I I nzi II

and

P S
n

mn dk 31

These estimates are obtained for each pair of matching feature vectors in the set

NXM'k. Note that the estimate in 30 is weighted by the magnitude of the individual

components so that large errors in small components do not overly bias the estimate.

Step 4) By this point there are only a few possible matches remaining, the

problem now is to pick the best match of the remaining few, or to reject all of them

if they are false matches. Since feature vectors from the same shape should all have

the same scale factor and angle of rotation, clusters in the estimates of a and 0

should be formed. The following procedure is used to define such a cluster. Let p be

the index on set NXM" with values from I to nm and form the vectors [ a ,..a a

T and [ 1 p 1 0rm from the estimates in step 3. Now
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calculate the two circulant difference matrices T and T, and normalize them y r

and r, so that

nm
T a p a p 32

^a -

nm nm nm

and a

T 0 a- .... ... 33

The values r and r, represent the maximum allowable intra-cluster distances for

the estimates of parameters a and 6 respectively. Next calculate TD the total

difference matrix between all estimates as

2 2TD  (T¢)+(T 0 ) 34

where each operation is performed element wise. TD will be an nm by rim

difference matrix normalized by I "+r 2 To find the clusters find the matrix

formed by setting all elements of TD> I to zero and all others to I. Now each row

(or column) contains a I for each estimate that is clustered with the indexing

estimate. In general there should be only one cluster if there is a match; however,

the above procedure may also produce severai subclusters of the larger cluster, in

order to pick the best cluster, the number of terms and the strength of the
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individual matches between each feature vector should be ccnstiered. The cilc-2 h

decision scheme is chosen to select the final cluster.

t) Total the number of members in each cluster, call this number GCNT

2) Multiply each group member by the weighting factor

I
I - d1 (m,n)

i=I

this indicates the degree of match between each feature vector in the

cluster. Sum this number and call it GSUM

3) Add the value rwo(GCNT - i) to GSUM and find the average value of this

total for each group; GAVG (r we(GCNT - t) + GSUM)/GCNT

4) Pick the cluster for which GAVG is maximum.

To get the final estimates of a and 0, find the average of the individual a i and e for

the chosen cluster. If there is no cluster the above procedure reduces to picking the

individual feature vector with the highest degree of match.

Unlike a and 0 the translation of a whole shape is not equivalent to the same

translation in each of its feature vectors (recall that translation is not a linear

operation). Therefore, scale and rotation information is required to estimate zt (the

translation vector between the centroid of the dictionary shape and the centroid of

the problem shape which have been matched). To estimate zt the matched shape

dictionary is scaled and rotated with respect to its centroid using the final estimates

obtained for a and 0. The rotated and scaled versions of the dictionary coordinates

ae calculated as

d k_ ~ x+a Cos() dm x -x) + sin() (dy~~ j
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dk~ 1 k)JkaCos me^' "k

where m = I to Mk and ( x Yk ) is the centroid of the dictionary. Note if the

dictionary is prVpared so that its centroid is (0,0) then (35) can be reduced to

kx' = a cos() ( x) + sine) (y)I

Y=a Cos) fy -sin(e) (mx) 36

Since translations from the same shape should be equal (except for certain cases of

symmetry) a clustering of translation parameters, similar to that just described for

a and 0, is expected for the estimates of xt and Yt" Therefore, an additional step can

be implemented to father reduce the possibility of false alarms and large errors in

the estimate of z .

Consider the final cluster from which a and 0 were obtained. Calculate the values

cxt and cyt, the translation coordinates between each matched feature vector fom the

cluster, where

1 6

ct ;- z Ay 37
6 i=1
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where

P dk'
X. - . - X.

c I c I

t ' k 38
cyi : ~i x1  38

with

c the index over the cluster obtained from the estimates of a and 9

( c=I to C ),

i= the index on the individual components of each feature vector from the

cluster,

x'= the x coordinate from the transformed dictionary page,

y'= the y coordinate from the transformed dictionary page.

Next form the two vectors [ 1Xt , cXt CXtI and [ lyt  cyt  cyt I

from the values obtained from (37). Then calculate the two circulant difference

matrices Tx and Ty normalized by rx and ry (the maximum allowable intra-cluster

distance for xt and yt as

T I xt - txt t'" ItXt Cx 39
Tx Kxxt ...t c~t-cXt ... 1

C x t -xt ... Cxt - CXt

r
x

T lt Y t I Yt CYt 40= .. ' yt  ...
cYt I Yt ... Ct _Cyt

y

Next calculate T the total normalized translation difference, as
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1 2 2
T = Tx ) +(T ) '4T

where each operation is performed element wise. Tz can be checked for clustering In

the same manner used previously with a and 6. In general all elements of Tz are

expected to cluster; however, there is a small probability ( dependent on the values

of rx and ry ) that they will not. In this case, the non-clustering terms are discarded

and the final estimates of x and Yt are obtained by averaging over the remaining

cluster elements.

V RESULTS

A 3-dimensional shape dictionary was constructed. It consisted of two airplanes,

an F-15 and an F-4. A value of 15 degrees was chosen for 0in c and a total of 20

views generated for each plane. The range of views covered ±30 degrees pitch and 0

to -45 degrees roll. The boundary curves were obtained by thresholding a 512X512

pixel image of each view to obtain a binary representation. A contour was then

obtained from this image and processed for critical points. The contours obtained for

each plane are shown in figure 14.

A value of 13 was chosen for the window length of the averaging filter used in the

first stage of the critical point extraction routine. The values used for the

segmenting thresholds were r.=-.3 and r2=-1.2. The values of the thresholds used

to determine the confidence numbers were r3 =-2.4 and r4--.8 respectively. This

corresponds to a design range of .5 to I for the scale factor a. A bias value of

equal to .48 was calculated based on a maximum deviation due to grid rotation of

(V-l)*r2. A maximum normalized distance of rm.04 is allowed between feature

vector components. Maximum cluster distances of ra=±.075 and r0=-5 degrees were"
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selected for the scale, rotation cluster pcrtion of the algorithm. Translation

parameter clustering was implemented with a maximum scattering of ±-10 pixels for

both rx and r y . A cluster weight of rw=.i was chosen for the cluster decision

procedure.

The problem texts were then extracted from the scene shown in figure 15. This

scene contains three planes, an Fi5, an F-4 and a HARRIER, placed at arbitrary

orientations within the range covered by the shape dictionary. The HARRIER was

used as a control to check the algorithm's ability to discriminate non-dictionary

shapes from dictionary shapes. The video camera has been moved away from the

planes to provide a scale change and adverse lighting has been employed to add

uncertainty in the determination of the planes' boundaries. The three problem texts

shown in figure 16 were extracted from the scene using binary thresholding. They

were then matched with the shape dictionary. From figure 16 it can be seen Lhat

only partial shape information is recovered for each plane ( the shadows are

interpretted as part of the object information ).

Each problem text was cross-matched with the two objects in the shape dictionary.

The results of the match are demonstrated in figure 17. The white contours

superimposed over the original scene indicate the view from the dictionary matched

to each problem text with its estimated scale, rotation and translation parameters.

The first problem text is identified as an F-i 5 at -1 5 degrees pitch and -15 degrees

roll. The secmd problem text was identified as an F-4 at 0 degrees pitch and -30

degrees roll. The third problem text was not recognized as a member of the shape

dictionary. The procedure generated no false alarms.

VI DISCUSSION

If additional identification power is required a second stage can be implememted to

334



eliminate portions of any composite shape problem text as they are identified,

thereby reducing the composite problem text to a truncated problem text which has a

higher recognition rate. Also false alarm rates can be significantly reduced by

implementing a similar procedure to compare boundary points once a possible match

has been indicated. It is also possible to extend the feature set chosen for each

dictionary shape thu reducing the probability of a miss. Unfortunately this results in

an increase in match times required for each dictionary shape. This increase in time

will be linearly related to the increase in the feature vector set. Miss rates

may also be reduced by relaxing the maximum distance allowed between featLTe

vector components, This is recommended only if the previously discussed

verification procedure is implememted because relaxation also increases the rate of

false alarms.

If a sequence of dynamic images ( scenes with objects in motion ) is being

analyzed, it is believed that the overall recognition rates will improve over the

entire course of the sequence. This is because the amount of occlusion will not

remain constant during the entire sequence, thus revealing more object information

in the totality of the sequence than in any one frame.

VII CONCLUSIONS

The definition of critical points using the concavity tree structure and the

corresponding identification algorithm described in this paper have been shown to

offer the following features and advantages when the identification of 3-dimensional

shapes in 2-dimensional scenes is considered. The theoretical definition of critical

points using the concavity tree structure of a shape is invariant to transforms of

scale, rotation and translation within the 2-dimensional scene. In the actual

implementation, invariance to the latter two transforms is maintained and
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invariance over a specific range of scale factors is cbtained. The critical Point

definition is reasonably stable under conditions of shape occlusion and Partial

framing, such that partial shape information is usually sufficient to identify a shade.

The algorithm requires only one pass per concavity tree branch to extract the

critical points. These critical points are the same regardless of starting point. The

critical points are concentrated in areas of high shape dynamics, i. e. the highest

areas of shape quantification occur in those regions of the shape of highest

qualitative interest. The algorithm is considered robust in the sense that, the more

complex a shape becomes the higher the probability of identifying it in a scene. This

is due to the fact that more critical points are allocated to the more complex

shapes. The algorithm is flexible in the sense that it can be modified to accomodate

restrictions on memory or computation. also as a byproduct of the matching

procedure, estimates of the scale, rotation and translation parameters of an

identified shape are automatically generated.
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APPENDIX

The proof of the theorem in section III follows. It has already been established

that the operation 41(.) is a point set relationship between a shape (subshape) and its

concavity tree, or to be more exact a shape (subshape) and its convex hull. Therefore

it is sufficient to show that this relationship is maintained under the three

transformations. The convex hull Sc of a shape S is defined mathematically as the

set of all points r such that

r = Xp + (I- X)q; 0XKI al

where p,q are points in S. This includes all points on all line segments joining every

pair of points in S. For points r, p, q, in R2 (al) may be rewritten as

(rxry)-X (pxpy) + (i-X) (qx,qy, a2

where rx=Xx+(-X)qx; ry=Xpy+(i-X)qy; O<X<I. The effect of each transformation is

to map individual points of S into S', therefore the definition of Sc' is simply the

above definition with p,q replaced by p',q'. Consider first the convex hull of a shape

under the transformation S It becomes the set of all points r' such that

r' = X p' + (I-X) q'; OX<l

or

(y a3

where

rx  -- X, cr px +  1 ,)a qx;

ry =Xap +(-X) y. aaq

the terms in (a4) can be rearranged so that
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r - a [ X + (1- qx

= [ Xpy + (I-X) qy
ry a py + qy

which is equivalent to the transformation SaC(a) on the whole line segment, or

r' = Sc a{X p + (I-X) q}. a6

Taken over the entire set S, this can be rewritten as

h( Sa ( S) Sa ( Ch( S ))a7

which can be interpretted as "the convex hull of the scaled shape S is equal to the

scaled convex hull of S. A similar argument can be used for the transformations

R0 (e) and T(e) with (a4), (a5) and (a4) replaced by (a8), (a9), (aIO) and kal I),

(at2), (a13) for Re(,) and T(.) respectively. Specifically,

r x, ry' ):X(Pxcose-py sine,pxsine+p ycose)+

(I-X) (qx cose - qy sine , qx sine + qy cose

where,

r : X ( P cose - p sine ) + (l-X) ( q cose - qy sine);

cosO-+ p- sine-) +-Tl-A)-{-q sine-- q, cose. a8

y xy x Y

which can be rewritten as,

r x = [ x + (I-X) qx ]cose - [X py + (I-X) qy ]sine;

r =[ X px + (I-X) qx ]sine + [X py + (-X) qy] cose a9

and finally,

r' = R Xp + (I-X) q}. alO
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Similarly,

(rx',ry) X(Px + Xt Py + Yt) +(I-X) (qx + x t qy + Yt)

where,

rx  X (Px + xt + (iI(qx + xt

ry = (y + Yt +  -X) ( y + Yt ;all

which can be rewritten as,

r, r X px + X x
t +qx - Xq +xXx [x-xp+(l -x qx ]+x,

and finally,

r' T Xp+ -X) q. a13

These arguments can be summed up, as in (a7) for the scaling transform, by

(a14) and (al5) for the rotation and translation transforms respectively.

Ch( Re (S )) R0  ( Ch( S)). a14

Ch( T (S)) T (Ch(S)). a15

It has been sf omnthat-the relatidnshi p between the-convex hull of a shape with the

shape itself is preserved under the defined transformations. The only other

operations involved with the determination of C from S are intersections. However,

since Sa(e) , R0(.) and T(.) are restricted to be one-to-one, all intersections are

preserved by the nature of the transforms, i.e., any two points which coincide in the

image of the transforms will also coincide in the preimage of transforms. Therefore

the relationships in (2+) are true.
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PART TWO

A Minimax Risk Quantizer for Noisy Sources

1. Introduction

Classical quantizer design theory has focused on

determining the optimal quantization mapping which

minimizes the expected value of a distortion measure

between the quantizer input and output. These techniques

usually require a priori information concerning the

statistics (probability distribution, ist and 2nd moments,

etc.) of the signal to be quantized. The need for

quantizing sources with incomplete knowledge of the source

statistics is well recognized, and a number of efforts

[1)6][121 have been made to address the problem. Bath

and VandeLinde [I] have presented the fundamental

development for minimax quantization of signals with

distributions from a unimodal generalized moment

constrained class. The minimax quantizer is said to be
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that quantizer with a maximum distortion between the

quantizer input and output less than that of any other

quantizer for the given distribution class.

Minimum risk quantization theory [4J has been applied

to the problem of quantizing a source signal corrupted by

independent additive noise (figure 1) and has shown the

promise of using risk theory to determine an optimal

quantization scheme. This approach also uses considerable

a priori information concerning the source and noise. The

general risk theory analysis however, allows the use of a

number of estimation schemes to solve the corruptive noise

problem. Minimax estimation can be applied to the

quantization problem to produce a quantizer which

guarantees a maximum risk less than that of any other

quantizer. In section II the general quantization problem

is stated. Section III follows with a description of the

risk theory approach to quantization. Section IV develops

the minimax risk quantization theory for an additive noise

corrupted source with parallels drawn to the foundation

provided by Bath and VandeLinde. Section V describes some

simulation results followed by conclusions.

II. General Quantization

Most of the prior work in quantizer design
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charr'-lerize the quantizer mapping as an estimator of the

quant. izer input. A decis ion is made regarding wi thtLI

which region of the domain an input sample falls, and a

representative value is determined which best estimates

elements of that region. Denote the quantizer ciomain

space X, and the finite range space Y. Then the quftntizer

mapping, y = q(x), produces v E Y, Vx E X. The design (-f

a quantizer consists of completely specifying q(x) and Y,

when X is known. The mapping is surjective since every

element. in Y is a possible outcome of q(x), Vx E X. Since

Y is finite, call N the number of elements in Y. Define

an index set on the elements of Y so that Y=(yI' " ',.

The domain can be partitioned into N disjoint sets,

X i ={x I q(x) = y, x 6 X}, i=1,...,N, with U X i a X.
i

As mentioned above, it is common practice to require

that a representative value y estimate the sample x. To

this end, Y and q(x) are defined so that y closely

approximates x. This will require that each subset A'i be

a connected subset with yi 6 Xi. The use of risk theory

for quantization analysis will describe the quantization

process in such a fashion that the membership requirement,

Yi E Xi, may no longer be applicable and will not be

required.

64



Il. 1isk Quant ization

The problem of quantizing noisy sources, as

illustrated in figure 1, requires new techniques to

determine optimal quantization schemes. Here an

independent identically distributed (i.i.d.) information

source has been corrupted by an i.i.d. additive noise

source, and it. is required to quantize the resulting noisy

signal. The classical quantizer design procedure yields

the quantizer mapping which produces range elements that

best estimate the noisy input samples -- which may produce

unsatisfactory results. The problem is caused by the

perception of the quantizer as an input estimator. By

changing this perception, it will be shown that the

problem may be solved using risk and estimation theory. '

Pisk quantization is based upon the state space

representation of figure 2. Here the source, e, is mapped

through some probabilistic transition mechanism,

PXo(xjO), from the parameter space 8 to an observation

space X. The quantizer mapping q(x) is the decision rule

which determines a representative element y from the

decision space Y which estimates the source, 0, based upon

the observation x E X. Since the quantizer maps onto the

decision space Y, and the quant izer range must consist of

a finite number of elements, the elements of Y may be
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indexed so that .i, I, ... N, and U yi Y as :)efore.

Although the observation x is an element of the set XI, YI

representing the observation set will not be required to

be an element of that set. This is because the

probabilistic transition (due to the noise) might corrupt

the origrinal signal source such that. the best estimate

does not lie within the observation set X i. The concept

of quantization as estimation is the key to risk

quantization, with the specific requirement of source

estimation rather than input estimation. This will

provide the necessary quantization schemes for noise

corrupted systems, while incorporating the classical

quantizer definition of input estimation for the noiseless

case.

To determine an estimation rule, some form of quality

measure is required. This may be given by a cost function

C(G,y) over 8 X T which represents the cost associated

with estimating the parameter e by decision y, based on

observation x, V 0 E e, x E X, y E Y. The cost is

generally expressed as a function of the difference

between the parameter and its estimate,

C(e,y) = C(e = 0 - y) ()

With the specified cost function, the risk is defined as

the expected value of the cost:
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R zF [C(O0, zqx )) 2

K'S t L"I I ( t heot y t echn iques may be empi oyed to determ inf.

the quant iztt ion mapping cl(.) which minimizes the risk

f unc t on0

IV. Mtntmax Ilisk Quantization

The risk theory approach has been applied to the

addit ive noise problem depicted in figure I for well

def ined a pr-iori source and noise distributions to obtain

a m in imum r isk quantizat ion solut ion [4]1. It is shown in

1 4 that the risk approach is a viable one to quantizer

(ifsign for such systems, and is equivalent to the

class ical result for noiseless systems.

I t i s of ten l ikely, however, that- the quantizer

dIesign must be based on incomplete knowledge of the signal

SIZj111sties. Fior example, a problem may arise when a

'uantizer is needed for a source where the statistics are

fairly well known, but various unknown noise distributionls

ran corrupt the source signal. Likewise, the noisy

characteriSLics of a sensor may be well defined, but. the

exact probability distribution of the source signal to be

qjuantized with the sensor unknown. These types of

p~roblemns suggest the use of mininax estimation to
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determine the quant.ization mapping. Minimax estimation

seeks to minimize the maximum possible distort ion by the

estimator, and is directly applicable to the risk approach

to quantizer design.

This is demonstrated by examining the problem of an

additive noise source using risk theory and minimax

estimation. Specifically, the source statistics and

probability distribution will be assumed known a priori.

The exact distribution of the noise, however, will be

assumed to be unknown, but belonging to a generalized

moment constrained class of distributions, C. A risk

analysis of the system will be applied using minimax

estimation to produce a minimax risk quantization scheme

for the system. Further, it will be shown that the

analysis is reversible and may be applied to the additive

noise problem when the noise probability distribution is

well defined, but the knowledge of the source distribution

is incomplete.

A minimax estimator t * is one which guarantees a

maximum risk no greater than that for any other

estimator [11]. That is,

sup R *(e) 5 sup R (0) (3)
a t 0 t

Likewise, the minimax quantizer will be defined as one

which guarantees the minimum maximal risk for all

quantizers. Minimax quantization theory has been
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developed for the classical quantizer problem of noiseless

sources by Bath h and VandeLinde [ I]. The approach

developed will be applied in the risk theory development

of an appropriate quantizer for the additive noise

problem.

Known Source Distribution

Consider the sequence of independent, identically

distributed random variables {k}, from the known

cumulative probability distribution function (c.p.d.f) F0 .

The source sequence has been corrupted by a noise sequence

(Nk}, with unknown c.p.d.f.s (FN] ), to produce the

observation sequence (Xk} to the quantizer.

The sequence (FN }, while unspecified, are

constrained to belong to the set C of all possible

c.p.d.f.s with whatever a priori information of the noise

characteristics is available. The set to be considered

here is the set of c.p.d.f.s belonging to the generalized

moment constrained class. These distributions are

required to have a generalized moment less than or equal

to some finite constant. This may be viewed as a

restriction of the noise power to be finite.
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The minimax risk is defined as:

R min max R(q, F F N ) 4)
qEQN FN EC

where R(q,FO,FN) is the risk for an N-level quantizer q

from the set of all possible N-level quantizers ON and the

c.p.d.f.s Fe, F N, described above. The minimax risk

quantizer, q , is that quantizer which provides the

minimax risk P The properties of the minimax risk

quantizer, analogous to the minimax quantizer, are:

I) V FNE C, 3 R q, > R
q

where R * is the absolute maximal risk for
quantizer q

2) 2 q E ON, q # q * max R(q,FGF N) R R

F NEC

where q* guarantees a maximum risk no
greater than the maximum risk

of any other quant izer q E N .

The quantizer mapping, q(x) E ON, maps an x E A'i to a1I
quantizer level yi E Y, i:1, -. ,N. For the scalar

quantizer, X i = [xi,xi+ 1 ), where x, = -- , XN+l , and

the quantizer thresholds comprise the set {(xi,

i=l,"'',N+l. Note that the set: of quantizers ON does not
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require the quantizer level Yi be an element of '.i"

The risk for any particular quantiztr" mapping may be

de f iled as:

R(qF 0 'FN) A' C(0,q(x)) dFN po(e) do (5)

e N

where the inner integral is a Lebesgue-Stieltjes integral

over the sequence of noise c.p.d.f.s (FN k}. The order of

integration is changed to yield:

R(qF ,F ) J F N C(0,q( x)) p (0) dO dFN (6)
N 8

The purpose of the interchange is to facilitate the

minimax operation procedure that occurs later.

It is apparent that if the system is noiseless, the

risk function is precisely that of the classical quantizer

distortion function. The minimax quantizer then is the

same as the results of Max [9] since the source

distribution is assumed known.

R = inf C (O,q(x)) po 0 ) dO, 9
qe

= inf j C(G,q(O)) pG(O) dO 7)
q e

The cost function used is restricted to some bounded

distortion measure, d(G,q(x)), between the source and

quant izer output:
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C(0q~x) fd( q ( )) ((,q( :) ) ,I

C. (l 9, q(A

The distortion measure d(G,q(x)) is required to b(- even,

continuous, monotonic strictly increasing in I0-q(.,,if, and

zero for perfect estimation. The bound on the cost

implies no additional penalty for a distortion larger than

the limit, L.

The generalized moment constraint is given by some

function p(n) satisfying the same conditions as those for

the distortion function such that:

f P(n) dF(n) :5 c. (9)
N

The constraint function p(n) simply implies that the noise

signal power is bounded. The distortion and constraint

functions considered here are:

d(,q()), d-(~ ~x) n

(10)

The conditions of bounded cost and those imposed on

d(eq(x)) and p(n) are required for the Lagrange

minimization of the next section.

The problem then, is to determine the minimax risk

quantizer q for the worst case c.p.d.f., Fas, which

a c hieves:
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inf sup R(q,Fe, F) R(q ,F, F (l[
qE N FNGC

The set, 0 N is the set, of all symmetric quant.izers where

the levels are symmetric about the source mean, and the

thresholds are symmetric about the observation mean. The

set C is the set of c.p.d.f.s belonging to the generalized

moment class, and R is the risk function using the cost

function C(O,q(x)). To determine the minimax risk

quantizer, it. first necessary to find the maximum risk due

to a particular quantizer mapping q E 0N, then determine

which quantizer provides the minimum of all of the maximum

risks.

It has been shown [1] that the set C is a weak*

compact subset of a normed Banach vector space (N.B.V.) of

normalized functions of bounded variation. Also with any

linear functional on N.B.V.[O,-] (such as R(q,Fo, N)),

which is weak * continuous in F., then:

V q E , 3 F * E C, R* (q) 9:
(12)

R*(q) = R(q,F FJ ) max (2qFo, A)

F NEC

Furthermore, a method for determining a minimax quantizer

via a constrained minimization in a Lagrange multiplier

space (R12) through the use of the Lagrange duality theorem

has been developed [I]. The technique will be
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paraphrased here to determine a mininiax risk qua-nt izer.

Le t C IVE N .B.V. [0oJ where- F exhibits the!

fol lowing properties:

1) FN is nonnegative, monotonically nondecreasing,

2 J'f dFN 5 1,

3) f ~(n) FN( n) < c.
N

Define the convex set C N C,,, N.B.V.[O,-] ), where F N

satisfies 1). Now define a convex functional

G [ ~dFN 11

which represents the necessary constraints for F N to be a

c.p.d.f. and have a generalized moment constraint. This

implies:

C' F Pi E~ 6C: G ( F /) !5 0

By the Lagrange duality theorem [8], an expression

for the maximum risk due to the quantization mapping q(.Y)

mliv be found:

75



q z .sup R(q,FeFN)

FNEC

sup R(q,F ,FN min sup { R(q,F 0 ,F N

FNEC X, X2 0 FNEC '(13)'

X L U dF N - 1)UX2 p dF, N ]

where the inner maximization is achieved for some worst

case distribution, F* E C, and the outer minimization by

XI and X . If" the cost weighting function is bounded,

R *(q) is finite and equation (6) can be used to replace

R(q,Fg,F N ) of equation (13) to yield:

R (q) = min [ X + X c) -f B(X, Ix )] .

X 1 ,AX2 20 1 2 1 2

where

B(X Ix max 1(n) dFN(n) (15)
F NEC N

I(n) I' C(G - q(x)) p 9 (O) dG - X - A p n) X

The minimization of equation (14) need only be

considered when B(X 1  2 ) is finite. This will only occur

when I(n) is nonpositive. If I(n) is positive at any

point, a sequence of noise random variables {Nk} with

c.p.d.f.s {FN could occur such that as k g'-ts large, the
IVk
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p

integration tends to infinity.

if I(n) is requi red to be nonpos i tive, then t he

maximization of equation (15) over all possible F G CE

implies:

B a (= 9 0. 17) /

Since FN a constant is an element of C for IN,, it

k A

follows that if I(n) is made nonpositive, the maximum

possible integration of equation (15) is zero.

The minimax risk for any quantizer qEQ N and the

specified conditions then reduces to:

R (q) : min (X - Xac) (18), X ->0 t 2
1 2 e

I(n) 50

Figures 3 through 6 are a series of curves which

depict the function I(n) for various quantizers with

po(O) - N(0,l), and distortion bounds of L z 0.25, 0.75.

These curves show the effects of the distortion bound on

the function, and that it is quantizer dependent. Note

the discontinuity near the quantizer threshold.

The minimax risk quantizer q* then, is that quantizer

which produces:

S min min + 19
qEQ_ X, 9 0 2

I(n) 50

This result is similar to that obtained fotr ininimax
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quant izal i oi by Bath and VandeL inde for I. he genera I i zed

moment const rained class of quniiI izer iiiput dist r ibut ions.

It differs primarily in the function 1(n) which

incorporates the cost of estimiting the source by the

quantization mapping and the a priori knowledge of the

clean source probability di itribution function, F0 (O).

The minimization of equation (14) over all

nonnegative X., X , and nonpositive I(n) implies the

maximum of 1(n) is zero. As can be seen in equation

(16), the role played by X1 in I(n) is merely that of a

bias term. This implies that the minimization of equation

(14) can be determined by solving:

X X ) = max C(G,q(x)) p,(O) dO - )%o(n) (20)1 2 n [ 2

and minimizing over all possible X2  0. Maximization of

I(n) with respect to X and X*(X ) for a sperifir2 1s

quantizer q E 0 N will then yield the minimum X. and thea

requisite Xi for max I(n) = 0.

I
t  

2

Known Noise Distribution

The minimax risk thecry is easily modified for the

converse problem. That is, the prb I em rons dered i hus fat
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is that of quantizing an i.i.d. source, with known 7

probaib i I ity distribut ion, corrupted by a sequence of

independent additive noise random variables each of

uncertain distribution. If the noise sequence is i.i.d. h

with known c.p.d.f. FN, but the source sequence t Ok) is

only known to be distributed with the c.p.d.f. sequence

(Fe from the set C, then the risk may be written:

- 'I

R( q,FF,19 ) F N C(G,q(x)) pN(n) dn dF 0  (21,

e N

The minimax risk quantizer development for this

problem parallels the development for the previous case.

A similar solution is described as the minimax risk

*!

quantizer q* which yields the minimum maximal risk,

R (q), where:

R (q) = min (X + X2 c) 22)A A >0 t a.
i0)5
I ( 9) !50O4

ad

I(C) C(1 - q(x)) pN(n) dn - X - x p(0) (23)

The same restrictions apply to the distortion and

constraint functions, d(0,q(x)) and p(G) as before.

Likewise, e'
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* ~ m ax C C(0q x) p n dp ( 0)1 (24)
1 2 J '20 N

and the minimax risk quantizer q* is speci fied by a

procedure nnalogous to that of the previous section.

Figures 7 chrough 10 show the effects due to the

constraint on the noise power and the distortion bound L

on the function 1(0). These appear roughly similar to

I(s) in [], differing through the knowledge of the noise

for I(G).

Note that in the noiseless case, this risk

definition coincides precisely with the distortion

function of an unknown input sequence used by Bath and

VandeLinde. The minimax risk quantizer then is identical

to the minimax quantizer developed there for the classical

quantizer distortion measure.

V. Results and Conclusions

The minimax risk quantizer determination procedure,

is described by the following algorithm. No attempt has

been made to optimize the computation procedure.

I Select _! 0.

2) Determine the optimal X for the speci fled

80



2 1

3) Repeat step 2) over all X2 _ 0 to determine

the minimum of (X + X2 c). This is the

maximum risk for the quantizer q: *tq).

4) Repeat steps 1)-3) over all quantizers

q E 6 N to determine the minimum of the

maximum risks: I? min 3 (q).
q LQN

5) The minimax risk quantizer is that

quantizer q which yields the minimax risk:

RI (q*) = R

It appears from the plots of I(n) that the areas of

maxima occur at or within a 6 - neighbnrhood of the

quantizer thresholds. A simulation has been performed

based on this observation with the results appearing in

tables I and 2. These results were determined by sampling

I(n) in the region surrounding each threshold. The

quantizer step size was fixed at 0.01 and the accuracy of

the Lagrange minimization is such that the error in the

estimate is at most 1 x 10 - 7. The minimax risk quantizer

with specific quantizer thresholds were found, and the

minimum of these selected as the minimax risk quantizer.

Comparisons of the minimax risk quantizerq to the
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Max-Lloyd and minimum risk quantizers (G.S.+G.N. ) aro

shown at. the bottom or" tables I and 2. The mean sql;um,.

power constraint, c, is fixed such that for the G;auss.iln

noise case, the Signal-to-Noise Ratio (SNR) is 8 dB. This

value is shown in table 1. At 8 dB, the thresholds of all

three are nearly identical, with the levels for the

minimum risk quantizer inside (closer to the mean) those

of the Max-Lloyd quantizer, and the minimax risk quantizer

levels just slightly inside those of the minimum risk

quantizer. The constraint c is fixed for table 2 so that.

for the Gaussian noise case, the SNR is 4 dB. At 4 dB,

the outer threshold of the minimax risk quantizer has

migrated well outside of the other two quantizers, which

may be from the Max-Lloyd and minimum risk quantizers

assumption of Gaussian densities, while the minimax risk

quantizer only considers constrained noise power. The

levels of the minimax risk quantizer are now between those

of the Max-Lloyd and minimum risk quantizers. This may be

interpreted from the standpoint of the assumptions also.

The minimum risk quantizer assumes both the source and

noise are Gaussian, so it arrives at closely compacted

estimates for the levels. The minimax risk quantizer, on

the other hand, only assumes the source is Gaussian for

this example, and the noise power constrained -- therefore

the estimates are outside those of the minimum risk

82



..I'Y, e*Xtan.~v r, ran n, n W JTX an rn Wn Fr

quantizer (for this example). The minimax risk quantizer

compensates for the corrupting influence of the noise,

whereas the Max-Lloyd quantizer does not. For this

reason, the estimates for the quantizer levels of the

minimax risk quantizer are then placed within those of the

Max-lloyd quantizer.
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TABLE 1

Miniiuax Quantizer Determination

(N =4, Squared-Error Cost, p.0  N(0,1))

YN 0, L =0.25, SNR =8dB 4 c =0.1585

X1 Y YJ Minimax--Hisk

0.90 0.41 1.23 0.09931

0.91 0.41 1.24 0.09854

0.92 0.41 1.24 0.09780

0.93 0.41 1.24 0.09708

0.94 0.41 1.24 0.09638

- ~0.95 0.42 1.24 0.09571 --

0.96 0.42 1.28 0.09743

0.97 0.42 1.31 0.09921

0.98 0.41 1.31 0.09875

0.99 0.41 1.31 0.09818

1.00 0.41 1.31 0.09762

1.01 0.41 1.32 0.09709

1.02 0.*41 1.32 0.09657

1.03 0.41 1.32 0.09606

1.04 0.41 1.36 0.09807

1.05 0.41 1.39 0.09973

Max-Lloyd Minimum Risk *Minimax Risk

V. 1i V.Yi Xi

0 0.4874 0 0.4774 0 0.42
1.056 1.625 1.056 1.298 0.95 1.24

*Minimum Risk for Gaussian Sources.
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TABLE 2

Minjinax Quanti zer Determination

(N z 4, Squared-Error Cost, p 0  N(0,1))

N 0, L 0.25, SNR = 4dB : c = 0.398

"i YO "Y Minimax-Hisk

1.27 0.41 1.51 0.12232

1.28 0.41 1.53 0.12372

1.29 0.41 1.56 0.12500

1.30 0.41 1.56 0.12447

1.31 0.41 1.56 0.12395

1.32 0.41 1.57 0.12343

1.33 0.41 1.57 0.12294

1.34 0.41 1.57 0.12254

1.35 0.41 1.57 0.12198 i -

1.36 0.41 1.58 0.12348

1.37 0.41 1.60 0.12492

1.38 0.41 1.60 0. 12450

1.39 0.41 1.60 0.12408

1.40 0.41 1.60 0.12367

1.41 0.41 1.61 0.12326

Max-Lloyd Minimum Risk* Minimax Risk

x Yi xi Yi xi Yi

0 0.5354 0 0.3830 0 0.41
1.160 1.785 1.160 1.277 1.35 1.57

*Minimum Risk for Gaussian Sources.
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